Software Process

- A set of activities that leads to the production of a software product
 - What product we should work on next
 - What criteria that work product must satisfy

- There is no standard or ideal process!
 - For some systems, such as critical systems, a very structured development process is required.
 - For business systems, with rapidly changing requirements, a flexible process is likely to be more effective.
 - For large systems, a mixed process is often preferred.
Software Process Models

- Waterfall Model
- V-Model
- Prototyping
- Iterative Process
 - Incremental Development
 - Spiral Model
 - Agile Methods
- Rational Unified Process (RUP)
Waterfall Model
Waterfall Model

- **Pros**
 - A plan-based, document-driven, rigor process
 - Fits with other engineering process model

- **Cons**
 - Premature freezing of requirements
 - Inflexibility

- **Usages**
 - Critical systems
 - Large systems (hardware & software)
 - Different development teams in different places
 - Long lifetime
V-Model (the extension of Waterfall)
Prototyping

requirements engineering

<table>
<thead>
<tr>
<th>design</th>
</tr>
</thead>
<tbody>
<tr>
<td>implementation</td>
</tr>
<tr>
<td>testing</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>design</th>
</tr>
</thead>
<tbody>
<tr>
<td>implementation</td>
</tr>
<tr>
<td>testing</td>
</tr>
<tr>
<td>maintenance</td>
</tr>
</tbody>
</table>
Prototyping

Prototype

- Prototype is a working model of a software system, which emphasizes certain aspects.
- Usually starts with requirements that are not well understood

Pros

- A good way to clarify user requirements
- Useful for user interface design

Cons

- The process is not visible
- The resulting system can be poorly structured
Iterative Processes

- The essence of iterative processes is that the specification is developed in conjunction with the software.
 - Incremental Development
 - Spiral Model
 - Agile Methods
Incremental Development
Incremental Development

- The functionality of the system is produced and delivered to the customer in small increments.
- Starts with the user requirements that are best understood, or essential features.
- Each release is a mini-waterfall.

Pros
- Avoids the “Bing Bang” effect.
- The most important system services receive the most testing.

Cons
- Contractual problems
- Hard to manage
Spiral Model

1. Determine objectives

2. Identify and resolve risks

3. Development and Test

4. Plan the next iteration

Cumulative cost

Progress

Review

Implementation

Test

Code

Detailed design

Operational Prototype

Prototype 2

Draft

Prototype 1

Requirements

Verification & Validation

Test plan

Development plan

Concept of requirements

Concept of operation

Requirements plan

Risk analysis

Risk analysis

Risk analysis

Risk analysis

CS 490MT/5555: Software Methods and Tools
Spiral Model

- A risk-driven process model
- Each loop in the spiral consists of:
 - Identify objectives and alternatives
 - Evaluate the alternatives, identify and resolve risks
 - Develop the identified portion of the product
 - Plan for succeeding phases
- Pros
 - Subsumes previous models
- Cons
 - Not clear how to analyze risk
Agile Methods

- Traditional plan-based approaches (waterfall, spiral, incremental) often involve a significant overhead in planning, designing, and documenting the system.
- Agile methods allow the development team to focus on the software itself rather than on its design and documentation.
Agile Methods

- **Principles**
 - Customer involvement
 - Incremental delivery
 - No prescriptive process
 - Embrace change
 - Focus on code
 - Maintain simplicity

- **Examples**
 - Extreme Programming (XP)
 - Pair programming
 - Test-driven development
Rational Unified Process (RUP)

Disciplines
- Business Modeling
- Requirements
- Analysis & Design
- Implementation
- Test
- Deployment
- Configuration & Change Mgmt
- Project Management
- Environment

Phases
- Inception
- Elaboration
- Construction
- Transition

Iterations
- Initial
- E1
- E2
- C1
- C2
- CN
- T1
- T2
Rational Unified Process (RUP)

- Separation of phases and development activities (workflows)
 - Four phases: Inception, Elaboration, Construction, Transition
 - Nine workflows: Business modeling, Requirements, Analysis and design, Implementation, Testing, Deployment, Configuration and change management, Project management, Environment

- In principle, all of RUP workflows may be active at all phases of the process.

- A hybrid of traditional process models
 - A phased model where phases are more related to business
 - Each phase is enacted in an iterative way
 - The whole set of phases may also be enacted incrementally
Software Engineering Activities (covered in this course)

- Requirements Analysis and Specification
 - Requirements Specification (UML Use Case Diagrams)

- Software Architecture and Design
 - Architectural Design (ArchStudio)
 - Detailed Design (UML Class Diagrams, etc.)

- Software Implementation
 - Development Environment (Eclipse)

- Software Testing
 - Unit Testing (JUnit Testing Framework)

- Software Maintenance
 - Version Control (Subversion, GIT)
Other Software Engineering Activities and Topics (not covered)

- Software Deployment
- Software Refactoring
- Software Metrics
- Software Mining
- Software Usability
- Software Product Line
- ...
Reminder

- Lab #1 is on next Tuesday.

- Assignment #1 will be assigned after Lab #1.